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COMPUTER SOLUTIONS OF THE GRAVITATIONAL N-BODY PROBW 

By Frank Hohl 

NASA Langley Research Center 

Thermalization e f fec ts  i n  a one-dimensional model fo r  a self-gravitating 

system have been investigated f o r  systems containing l o w  numbers of mass sheets 

(up t o  40). It i s  found tha t  the fluctuation of the kinet ic  energy is inversely 

proportional t o  the  square root of the number of par t ic les  i n  the system. 

The s t a b i l i t y  of stationary s t a t e s  f o r  one-dimensional self-gravitating 

systems is  investigated by solving the N-body problem on an electronic com- 

puter. The number of "stars" i n  such systems is  large (several  1000) so hat 

the systems can be t rea ted  as coll isionless.  A variat ional  method is  used t o  

show tha t  stationary dis t r ibut ion functions tha t  are always decreasing i n  going 

outward fromthe center of the  system are s table .  For other stationary d i s t r i -  
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butions the system does not represent a minimum energy configuration and the  

system may be unstable. 

b i l i t i e s  are presented. 

Computer solutions i l l u s t r a t ing  the result ing insta-  

Numerical experiments with a simple two-dimensional rod model show t h a t  

the s p i r a l  structure and other filamentary s t ructure  of galaxies may result 

from purely gravi ta t ional  effects  . 
THERMALIZATION EFFECTS I N  A ONE-DIMENSIONAL STELLAR SYSTEM 

In  a one-dimensional system crossings w i l l  always take place so tha t  one 

can expect the system t o  approach a Maxwellian distribution. An exact double- 

precision computer program was used t o  investigate thermalization effects  for 

low numbers of "stars." By an "exact" program we refer t o  a program where the ' 
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shortest  crossing time fo r  a mass sheet is  determined and the  system i s  then 

advanced by tha t  t i m e  and the  process is  repeated. This, of course, d i f f e r s  

from the  model used f o r  the  results obtained f o r  systems with large numbers of 

mass sheets where the  system is  always advanced for a constant time in te rva l  At, 

irrespective of the nmber of crossings during t h i s  t i m e  interval.  The "exact" 

program is very accurate. For example, after time reversing the numerical inte- 

gration of a typ ica l  system investigated it w a s  found tha t  the i n i t i a l  condi- 

t ions  were  reproduced accurately t o  12 d ig i t s .  

The relaxation or character is t ic  time f o r  a system of stars i s  given by 

4 2  
T~ = (4nGp) 

the  gravi ta t ional  constant and p is the mass density. The 

character is t ic  length of in te res t  i s  the Jeans or  Debye length D which i s  

defined by 

D = V T T ~  

where VT is the  velocity dispersion of the system o f  stars. 

Lecar (ref. 1) has investigated the exact one-dimensional motion of low 

numbers of "stars" and finds tha t  t o  order 

t ion .  

sheets w a s  chosen so tha t  t he  system can be followed f o r  a long period of time. 

In  order t o  obtain meaningful results time averages of the  systems are inves- 

t igated.  The constant time interval  used i n  the ave ing process is  taken t o  

be smaller than the average crossing time f o r  sheets the  system. The time 

averages are taken over times of the order n2D2Tc w e r e  nD - N, the  number 

of mss sheets i n  the  system. It should be noted tha t  the  investigation of 

~ D T ,  there exists no thermaliza- 

I n  the present study of thermalization e f fec ts  a low number of m a s s  



thermalization effects  is still i n  progress and only some of the i n i t i a l  

numerical resul ts  are presented here. 

For a l l  of the systems investigated it was found tha t  the time-averaged 

potential  energy (P) and kinetic energy (T) s a t i s f i ed  the v i r i a l  theorem. 

is, W/* = 0.5 with an accuracy of a t  l ea s t  three d ig i t s .  The < > signify 

time-averaged quantit ies.  

That 

As discussed by Ford ( re f .  2)  the Poincare recurrence 

time and the general behavior of the system is dependent on the i n i t i a l  con- 

ditions. 

time behavior of the system i s  very nearly periodic. However, fo r  the results 

presented here the i n i t i a l  conditions were a rb i t r a r i l y  chosen. 

Figure 1 shows the time-averaged velocity distribution and density f o r  a 

For example, we can choose special i n i t i a l  conditions such tha t  the 

+part ic le  system. The so l id  l ine  f o r  the velocity distribution corr-a-onds 

t o  a Maxwellian distribution and is  obtained by integrating A exp(-dJ) over 

x. That is, 

The so l id  l ine  f o r  the density i s  given by 

n(x) = 1 xGm2N2tc sech2(rrGm2Ntcx) 
2 

The value of K i s  obtained from 

The c i rc les  i n  figure 1 represent the time-averaged numerical resul ts .  The 

(4)  

"experimental" velocity distribution i s  near the Maxwellian distribution. 

However, the variation of the density indicates t ha t  there i s  some near- 

periodic behavior of the system. Such near-periodic behavior is l ike ly  
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t o  occur fo r  very low numbers of "stars," Figure 2 shows the r e s a t s  f o r  a 

four-sheet system. Again, the  variation of the time-averaged velocity dis- 

t r ibu t ion  and density indicates tha t  there i s  near-oscillatory behavior of the 

system. 

kinet ic  energy of the system as a function of time. 

kinet ic  energy of the  systems investigated are very violent and show no 

decrease i n  t i m e .  The fac t  t ha t  these fluctuations show no decrease in  time 

indicates tha t  a Maxwellian dis t r ibut ion can be reached while the fluctuations 

i n  the kinet ic  energy remain extremely violent.  For example, f igure 3 shows 

the time var ia t ion of the  k ine t ic  energy f o r  a 6-particle system. 

sponding time-averaged velocity dis t r ibut ion and density are shown i n  figure 4. 

We see that the  "experimental" points are near the  Maxwellian dis t r ibut ion fo r  

both curves. Figure 5 shows that for a 10-particle system the "experimental" 

velocity dis t r ibut ion and density points reproduce the theoret ical  Maxwellian 

curves. 

t e m  mer times of the order of N 2 ~ C  

averaged dis t r ibut ion is  very nearly Maxwellian. 

This osc i l la tory  behavior has a l so  been observed by plot t ing the 

The fluctuations of the 

The corre- 

The results presented so far were obtained by time averaging the  sys- 

and the results indicate that the t i m e -  

However, t o  show relaxation 

t o  a Maxwellian dis t r ibut ion one should prepare a system which is i n i t i a l l y  non- 

Maxwellian and then observe the  relaxation t o  a Maxwellian dis t r ibut ion.  T h i s  

was  attempted and the results f o r  a 40-particle system are shown i n  figure 6. 

The so l id  l i ne  corresponds t o  a Maxwellian velocity distribution. The c i rc les  

represent the i n i t i a l  velocity dis t r ibut ion of the  system obtained by time 

averaging over PT~ .  After the system w a s  advanced in  time f o r  2N2 charac- 

t e r i s t i c  periods it w a s  found that the experimental velocity dis t r ibut ion was 

s t i l l  ident ical  t o  the i n i t i a l  distribution. Thus one must conclude tha t  no 

relaxation t o  a Maxwellian dis t r ibut ion occurs t o  order N 2 ~ c .  



Another quantity which gives information on the behavior of the system i s  

the correlation function f o r  the k ine t ic  energy 

C(T) = < ( T ( t )  - C P ) ( T ( t  + T )  - cr>)> ( 6 )  

This quantity i s  plot ted i n  figure 7 fo r  a 6-particle system and the result 

shows tha t  osci l la t ions i n  the k ine t ic  energy have a long-time memory and &re 

only slowly damped. The energy correlation function fo r  a b -pa r t i c l e  system 

is shown i n  figure 8. The resu l t s  indicate tha t  f o r  small T there exists 

Landau damping but some smaller correlation pers i s t s  f o r  a long time. 

time average i s  taken over a longer t h e ,  then the osci l la t ions i n  

reduced f o r  large T and remain the  same f o r  small T. I n  figure 9 the  rela- 

If the  

are C(T) 

t i ve  fluctuation of the kinet ic  energy 

i s  plot ted as a function of the number of par t ic les  

the points f a l l  near the  curve l/fi which indicates t h a t  the osci l la t ions i n  

the kinet ic  energy of the  systems do represent thermal fluctuations. 

N. It can be seen tha t  

It is  

therefore d i f f i cu l t  t o  explain the long-time correlation shown i n  figures 7 

and 8. 

MINIMUM EEERGY PROPERTY 

It will now be shown tha t  the minimum energy property which has been 

obtained by Hohl and Feix ( re f .  3 )  fo r  a special  dis t r ibut ion can be extended 

t o  a rb i t ra ry  dis t r ibut ion functions. The water-bag model i l l u s t r a t ed  i n  f ig-  

ure 10 is used i n  the  analysis. The contours v+(k)(x,t) and v-(k)(x,t) 

describe surfaces of constant dis t r ibut ion function 

Liouville theorem the  phase space bounded by the  contours is incompressible. 

f = fk. According t o  the  
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In  the l i m i t  of a very large number of contours the water-bag model can be used 

t o  construct arbi t rary dis t r ibut ion functions (. 

To  simplify the equations we assume symmetric contours v+ (k) = v-(k) = &4, 
It is easily shown (ref. 4) t h a t  the equations which stationary contours v (k) 

m u s t  satisfy are 

E is  given by 

where G is  the gravitational constant, N is  the number of mass sheets, each 

of m a s s  m per unit  area, i n  the system. 

Ak i s  defined by the distribution function 

with Eml(z) = 6(c)d(. The variable e(k)  used i n  equation (9) is  

where xs (k)  ' i s  the end point of the. contour k. The t o t a l  energy of the sys- 

t e m  is  

6 



Extremizing the integral  f o r  W requires that g sa t i s fy  the Euler-Lagrange 

equation 

o r  

which are the equations fo r  the stationary contours. 

If equations (13) are t o  represent a minimum energy configuration the 

Legendre's cr i ter ion of the second variation of g m u s t  be sat isf ied.  That 

is, the quadratic form whose coefficient matrix has the elements 

must not be negative. Since only the diagonal elements 

are nonzero, the Legendre condition requires tha t  

Ak 2 0 (16) 

fo r  a l l  k. 

t ion must always decrease in  going outward from the center of the system where 

f = f l  must be the largest .  

minimum energy configuration and is always stable.  However, i f  Ak 2 0 i s  not 

sa t i s f ied  f o r  a l l  k, the system is not a minimum energy configuration. The 

system may thgn be unstable since the contours 

keeping the t o t a l  system energy constant. 

dimensional model have been performed f o r  two-contour systems t o  i l l u s t r a t e  the 

Equation (16) is  equivalent t o  s ta t ing  tha t  the distribution func- 

I f  equation (16) is sat isf ied,  the system is a 

v (k) can now be deformed while 

Numerical experiments with a one- 
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interchange in s t ab i l i t y  which destroys the stationary state. For the two sys- 

t e m s  investigated A1 = -%. In  the first case shown i n  figure 11 the  r a t i o  of 

the minimum t o  maximum star energy is  0.4. 

contours of the 2000-star system are  quickly dis tor ted while the heavier outer 

water bag t r i e s  t o  displace the inner bag. Figure 12 shows the results for  a 

2000-star system with a r a t io  of minimum t o  maximum star energy equal t o  0.23. 

The growth of the in s t ab i l i t y  is  now much slower because the central  water bag 

o r  hole is  much smaller. 

The figure shows that the stationary 

Another consequence of the  minimum energy property is  tha t  any stable 

stationary s t a t e  f o r  which equation (16) is satisfied can never be reached. 

TWO-DmSIONAL COMPUTER EXPERIMENTS FOR STELLAR SYSTM 

The motion of mass rods tha t  are of i n f in i t e  extent i n  the z-direction 

has been computed f o r  5OO-rod systems. 

rod is  obtained by swmning d i rec t ly  over the 

This .is a time-consuming proce,ss and the application of fast methods of solving 

the Poisson equation would speed up the calculations. A fast method of solving 

the Poisson equation has been used by Kockney ( re f .  5 )  who followed the motion 

The force acting on a par t icular  mass 

l/r force from each mass rod. 

of 2000 m a s s  rods. In  comparing the resul ts  obtained by the two different 

methods it was  found that they a re  nearly identical .  

The system of mass rods is advanced i n  time i n  the following manner. 

F i r s t ,  the force acting on a l l  par t ic les  is  computed by summing the 

f o r  a l l  par t ic les .  Second, the system is advanced f o r  a small time s tep  At 

and the process is  repeated. The resul ts  of the calculations are displayed in  

x-y coordinate space. 

l /r force 

During the calculations the t o t a l  energy and angular 
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momentum are computed t o  check on the accuracy of the computations. The nor- 

malizations 47cG = 1 and m = 1 have been used f o r  a l l  the calculations. 

Figure 13 shows the time development of a system of 400 mass rods which 

space. has an i n i t i a l l y  rectangular distribution of uniform density i n  

The system has an i n i t i a l  thermal energy equal t o  l/5 of the i n i t i a l  potent ia l  

x-y 

energy plus an i n i t i a l  solid-body rotation equal t o  nearly twice tha t  required 

t o  oppose the gravitational force toward the center of the system. 

seen from figure 13 tha t  the system quickly develops into a barred sp i r a l .  

However, at a later t i m e  the s p i r a l  structure has almost completely disappeared 

and the system approaches a configuration s i m i l a r  t o  811 e l l i p t i c a l  galaxy. The 

time has been normalized t o  

rotation. 

It can be 

1 wr- , the  inverse of the frequency of the i n i t i a l  

The remaining two-dimensional calculations were performed fo r  500-particle 

systems which have an i n i t i a l l y  uniform circular  distribution i n  x-y space 

and zero thermal velocity. 

various values of i n i t i a l  solid-body rotation. The i n i t i a l  positions are 

The evolution of such systems is  then studied f o r  

obtained by using a random number generator which gives a nearly uniform dis- 

t r ibut ion over a circular  region of the x-y plane. 

We first present the resul ts  f o r  the case where the frequency of rotation, 

a+, equals 

the gravitational force. Thus, 

ag, the frequency required such that the centrifugal force balances 

u+ = ag = ( 2 X  

where p is the m a s s  density of the rods per unit  length. The resulting 

evolution of the system is shown i n  figure 14. 

%-I. Figure 14 shows tha t  the system is relat ively stable. A t  g = 6.3%-l 

The t i m e  has been normalized t o  

there appear four irregular s p i r a l  arms. However, at a l a t e r  time the sp i r a l  
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a m  almost completely disappear and the system takes an appearance reminiscent 

of an e l l i p t i c a l  galaxy. 

The results f o r  the case of zero i n i t i a l  rotation are presented next. Fig- 

ure 15 shows t h a t  after an i n i t i a l  implosion the  system expands and presents 

some highly i r regular  filamentary structure.  

perature of the system increases due t o  the randomness of the  i n i t i a l  positions. 

The pressure due t o  the temperature then tends t o  reduce the  osci l la t ions and 

the system again takes a form s i m i l a r  t o  an e l l i p t i c a l  galaxy. 

After a second implosion the t e m -  

1 For w, = the system again contracts i n i t i a l l y  and then expands. 

The results are shown i n  figure 16. 

which tends t o  disappear at a l a t e r  time. 

tem is  clustered in to  two aggregates which combine again at a l a t e r  time. 

An irregular s t ructure  appears i n i t i a l l y  

Also a t  time t = 4.2Wg-' the sys- 

I n  figure 17 the results f o r  the case u+ = l.3%0 are  shown. The system 

pulsates and shows some i r regular  s t ructure .  The gen 1 behavior is  very 

The results f o r  the  two- 1 similar t o  tha t  of the previous case fo r  

dimensional stellar system are of a preliminary nature and additional work i s  

required t o  investigate the evolution fo r  systems w i t h  larger  numbers of "stars ." 

% = 5 "g. 
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Figure 1.- Time-averaged velocity distribution and density for  a 
3-particle system. 
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Figure 3. -  Time variation of the kinet ic  energy for a 6-particle system. 
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(a) Evolution up to t = 2.2h-1. 

Figure 13.- Time development of a stellar system of 400 mass rods. 
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Figure 14.- Evolution of a cylindrical  stellar system w i t h  q. = wg. 
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